测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2099-2110.doi: 10.11947/j. AGCS.2024.20240249.
• 大地测量学与导航 • 上一篇
陈灵秋1,2(), 柴洪洲1(), 暴景阳3, 王敏1,2, 郑乃铨4
收稿日期:
2024-06-19
发布日期:
2024-12-13
通讯作者:
柴洪洲
E-mail:clqseu@126.com;chaihz1969@163.com
作者简介:
陈灵秋(1988—),女,博士生,讲师,研究方向为GNSS遥感。 E-mail:clqseu@126.com
基金资助:
Lingqiu CHEN1,2(), Hongzhou CHAI1(), Jingyang BAO3, Min WANG1,2, Naiquan ZHENG4
Received:
2024-06-19
Published:
2024-12-13
Contact:
Hongzhou CHAI
E-mail:clqseu@126.com;chaihz1969@163.com
About author:
CHEN Lingqiu (1988—), female, PhD candidate, lecturer, majors in GNSS remote sensing. E-mail: clqseu@126.com
Supported by:
摘要:
利用信噪比(SNR)数据进行逆建模可以反演海面高度及其变化,但反演精度、稳定性依赖初值的精度和SNR数据的时间连续性,基于多模多频SNR数据逆建模反演海平面变化的性能及其在潮汐分析中的应用有待进一步研究。本文为LSP(Lomb-Scargle periodogram)反演结果引入海面动态改正,用于逆建模过程参数初始化,获得稳定、均匀的高精度海面高度反演值,并由反演海面高度开展潮汐调和分析。选取MAYG、BRST和SC02这3个大潮差测站,对其1 a的多模多频SNR数据开展逆建模反演试验,与验潮站实测海面高度对比分析进行算法验证。结果表明,MAYG站逆建模反演海面高度的均方根误差(RMSE)为5.97 cm,BRST站为8.78 cm,SC02站为2.38 cm,海平面变化反演精度达到厘米级;与实测海面高度的潮汐调和分析结果对比,年度、逐月拟合残差中误差高度一致,提取的分潮振幅平均绝对误差(MAE)优于1 cm,提取的迟角MAE在3°以内,潮汐分析提取的潮汐成分和非潮汐水位均具有高度一致性。多模多频SNR数据逆建模反演海面高度能够替代验潮站实测海面高度用于潮汐调和分析。
中图分类号:
陈灵秋, 柴洪洲, 暴景阳, 王敏, 郑乃铨. 基于多模多频SNR数据逆建模反演海面高度变化[J]. 测绘学报, 2024, 53(11): 2099-2110.
Lingqiu CHEN, Hongzhou CHAI, Jingyang BAO, Min WANG, Naiquan ZHENG. Sea surface height inversion based on inverse modeling of multi-GNSS and multi-frequency SNR data[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2099-2110.
表2
测站GNSS信号频点和SNR数据情况"
GNSS | 信号频率 | SNR类型 | ||
---|---|---|---|---|
BRST | MAYG | SC02 | ||
L1:1 575.42 MHZ | S1C | S1C | S1 | |
GPS | L2:1 227.60 MHZ | S2X | S2X | S2 |
L5:1 176.45 MHZ | S5X | S5X | S5 | |
GLON-ASS | G1:1602+K×9/16 MHZ | S1C,S1P | S1C,S1P | S1 |
G2:1246+K×7/16 MHZ | S2C,S2P | S2C,S2P | S2 | |
E1:1 575.42 MHZ | S1X | S1X | S1 | |
E5a:1 176.45 MHZ | S5X | S5X | S5 | |
Galileo | E5b:1 207.140 MHZ | S7X | S7X | S7 |
E5(E5a+E5b):1 191.795 MHZ | S8X | S8X | S8 | |
E6:1 278.75 MHZ | S6X | — | — | |
B1:1 561.098 MHZ | S2I | S2I | — | |
B3:1 268.52 MHZ | S6I | S6I | — | |
BeiDou | B2:1 207.140 MHZ | S7I | S7I | — |
B1C:1 575.42 MHZ(BDS-3) | S1X | S1X | — | |
B2a:1 176.45 MHZ(BDS-3) | S5X | S5X | — |
表3
MAYG测站多模多频SNR数据的逆建模精度评估"
GNSS | 频率 | SNR类型 | 滑动窗口SNR弧段数 | RMSE/cm | 相关系数 |
---|---|---|---|---|---|
GPS | L1 | GPS-S1C | 2 | 48.30 | 0.843 75 |
L1,L2 | GPS-S1C;GPS-S2X | 10 | 7.90 | 0.995 26 | |
L1,L2,L5 | GPS-S1C;GPS-S2X;GPS-S5X | 14 | 6.87 | 0.996 74 | |
GLO GPS GLO GAL GPS | L1 | GPS-S1C;GLO-S1C;GLO-S1P | 7 | 20.18 | 0.968 56 |
L1 | GPS-S1C;GLO-S1C;GLO-S1P;GAL-S1X | 9 | 14.63 | 0.982 97 | |
GPS GLO GAL BDS | L1 | GPS-S1C;GLO-S1C;GLO-S1P;GA L-S1X;BDS-S2I | 14 | 9.41 | 0.992 95 |
GPS-S1C;GPS-S2X;GLO-S1C;GLO-S1P;GLO-S2C | ; | ||||
L1,L2 | GLO-S2P;GA L-S1X;GAL-S7X;BDS-S1X;BDS-S2I; | 45 | 3.53 | 0.999 14 | |
BDS-S6I;BDS-S7I; | |||||
L1,L2,L5 | 全部 | 63 | 3.59 | 0.999 19 |
表5
MAYG测站实测海面高度和反演海面高度的分潮振幅、迟角"
分潮名称 | 振幅/cm | 迟角/(°) | ||||
---|---|---|---|---|---|---|
实测 | 反演 | 差值 | 实测 | 反演 | 差值 | |
M2 | 104.140 | 101.321 | 2.819 | 26.340 | 27.712 | -1.372 |
S2 | 53.158 | 51.651 | 1.507 | 65.869 | 67.282 | -1.413 |
N2 | 18.720 | 18.548 | 0.172 | 6.941 | 9.068 | -2.127 |
K1 | 14.137 | 12.903 | 1.234 | 4.217 | 6.181 | -1.964 |
K2 | 14.130 | 14.036 | 0.094 | 61.530 | 63.575 | -2.045 |
O1 | 8.953 | 8.177 | 0.776 | 6.960 | 5.983 | 0.977 |
NU2 | 4.172 | 3.900 | 0.272 | 5.612 | 6.449 | -0.837 |
P1 | 4.103 | 3.844 | 0.259 | 5.442 | 359.752 | 5.690 |
表6
BRST测站实测海面高度和反演海面高度的分潮振幅、迟角"
分潮名称 | 振幅/cm | 迟角/(°) | ||||
---|---|---|---|---|---|---|
实测 | 反演 | 差值 | 实测 | 反演 | 差值 | |
M2 | 204.800 | 202.198 | 2.602 | 105.745 | 108.121 | -2.376 |
S2 | 75.207 | 74.373 | 0.834 | 145.625 | 148.074 | -2.449 |
N2 | 41.406 | 40.674 | 0.732 | 87.886 | 89.718 | -1.832 |
K2 | 21.641 | 21.180 | 0.461 | 142.788 | 145.508 | -2.720 |
MU2 | 8.700 | 7.881 | 0.819 | 101.937 | 105.252 | -3.315 |
2N2 | 8.092 | 7.220 | 0.872 | 77.744 | 79.905 | -2.161 |
NU2 | 7.735 | 7.136 | 0.599 | 83.953 | 86.322 | -2.369 |
SSA | 7.434 | 6.841 | 0.593 | 83.262 | 84.007 | -0.745 |
L2 | 6.755 | 6.428 | 0.327 | 112.853 | 119.561 | -6.708 |
K1 | 6.563 | 6.826 | -0.263 | 73.204 | 74.202 | -0.998 |
O1 | 6.466 | 6.558 | -0.092 | 327.962 | 328.277 | -0.315 |
M4 | 5.842 | 4.509 | 1.333 | 99.788 | 106.965 | -7.177 |
表7
SC02测站实测海面高度和反演海面高度的分潮振幅、迟角"
分潮名称 | 振幅/cm | 迟角/(°) | ||||
---|---|---|---|---|---|---|
实测 | 反演 | 差值 | 实测 | 反演 | 差值 | |
K1 | 75.622 | 74.272 | 1.350 | 279.796 | 279.176 | 0.620 |
M2 | 55.797 | 55.408 | 0.389 | 10.178 | 10.260 | -0.082 |
O1 | 42.672 | 42.275 | 0.398 | 258.082 | 258.272 | -0.190 |
P1 | 24.121 | 23.789 | 0.332 | 279.097 | 279.126 | -0.029 |
S2 | 13.365 | 13.133 | 0.232 | 34.911 | 34.183 | 0.729 |
N2 | 11.968 | 12.019 | -0.051 | 343.233 | 343.324 | -0.091 |
Q1 | 7.265 | 7.199 | 0.066 | 251.248 | 251.345 | -0.098 |
[1] |
周兴华, 付延光, 许军. 海洋垂直基准研究进展与展望[J]. 测绘学报, 2017, 46(10): 1770-1777. DOI:.
doi: 10.11947/j.AGCS.2017.20170322 |
ZHOU Xinghua, FU Yanguang, XU Jun. Progress and prospects in developing marine vertical datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1770-1777. DOI:.
doi: 10.11947/j.AGCS.2017.20170322 |
|
[2] | XU Jun, BAO Jingyang, ZHANG Chuanyin, et al. Tide model CST1 of China and its application for the water level reducer of bathymetric data[J]. Marine Geodesy, 2017, 40(2/3): 74-86. |
[3] |
暴景阳, 许军, 于彩霞. 海洋空间信息基准技术进展与发展方向[J]. 测绘学报, 2017, 46(10): 1778-1785. DOI:.
doi: 10.11947/j.AGCS.2017.20170371 |
BAO Jingyang, XU Jun, YU Caixia. Technical progress and development directions of oceanic spatial information datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1778-1785. DOI:.
doi: 10.11947/j.AGCS.2017.20170371 |
|
[4] |
徐天河, 穆大鹏, 闫昊明, 等. 近20年海平面变化成因研究进展及挑战[J]. 测绘学报, 2022, 51(7): 1294-1305. DOI:.
doi: 10.11947/j.AGCS.2022.20220091 |
XU Tianhe, MU Dapeng, YAN Haoming, et al. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1294-1305. DOI:.
doi: 10.11947/j.AGCS.2022.20220091 |
|
[5] | LI Jie, FU Yanguang, TANG Qiuhua, et al. Accuracy assessment of a seamless depth datum model established on the basis of the global ocean tide model[J]. Journal of Coastal Research, 2020, 99(S1): 74. |
[6] | MARTÍN MÍGUEZ B, TESTUT L, WÖPPELMANN G. Performance of modern tide gauges: towards mm-level accuracy[J]. Scientia Marina, 2012, 76(S1): 221-228. |
[7] | ALDARIAS A, GOMEZ-ENRI J, LAIZ I, et al. Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3809-3821. |
[8] | GÓMEZ-ENRI J, VIGNUDELLI S, CIPOLLINI P, et al. Validation of CryoSat-2 SIRAL sea level data in the eastern continental shelf of the Gulf of Cadiz (Spain)[J]. Advances in Space Research, 2018, 62(6): 1405-1420. |
[9] | ZHOU Boye, WATSON C, LEGRESY B, et al. GNSS/INS-equipped buoys for altimetry validation: lessons learnt and new directions from the bass strait validation facility[J]. Remote Sensing, 2020, 12(18): 3001. |
[10] | BORN G H, PARKE M E, AXELRAD P, et al. Calibration of the TOPEX altimeter using a GPS buoy[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24517-24526. |
[11] | 郭斐, 李佰瀚, 张治宇, 等. 利用GNSS反射信号监测海面高度变化:基于法国BRST站2019—2021年数据[J]. 地球科学与环境学报, 2023, 45(3): 548-558. |
GUO Fei, LI Baihan, ZHANG Zhiyu, et al. Change of sea surface height monitored by GNSS reflected signals—based on data from BRST station in France from 2019 to 2021[J]. Journal of Earth Sciences and Environment, 2023, 45(3): 548-558. | |
[12] |
王笑蕾, 何秀凤, 陈殊, 等. 地基GNSS-IR风速反演原理及方法初探[J]. 测绘学报, 2021, 50(10): 1298-1307. DOI:.
doi: 10.11947/j.AGCS.2021,20200586 |
WANG Xiaolei, HE Xiufeng, CHEN Shu, et al. Preliminary study on theory and method of ground-based GNSS-IR wind speed[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1298-1307. DOI:.
doi: 10.11947/j.AGCS.2021,20200586 |
|
[13] |
边少锋, 周威, 刘立龙, 等. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型[J]. 测绘学报, 2020, 49(9): 1179-1188. DOI:.
doi: 10.11947/j.AGCS.2020.20200268 |
BIAN Shaofeng, ZHOU Wei, LIU Lilong. et al. GNSS-IR model of snow depth estimation combining wavelet transform with sliding window[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1179-1188. DOI:.
doi: 10.11947/j.AGCS.2020.20200268 |
|
[14] | 郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2024, 49(5): 715-721. |
GUO Fei, CHEN Weijie, ZHU Yifan, et al. A GNSS-IR soil moisture inversion method integrating phase, amplitude and frequency[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 715-721. | |
[15] | LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204. |
[16] | LARSON K M, RAY R D, WILLIAMS S D P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307. |
[17] | WANG Xiaolei, HE Xiufeng, ZHANG Qin. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J]. Remote Sensing of Environment, 2019, 231: 111229. |
[18] | NIEVINSKI F G, LARSON K M. Inverse modeling of GPS multipath for snow depth estimation—part I: formulation and simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6555-6563. |
[19] | NIEVINSKI F G, LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2): 309-322. |
[20] | STRANDBERG J, HOBIGER T, HAAS R. Inverse modelling of GNSS multipath for sea level measurements -initial results[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016. |
[21] | PURNELL D, GOMEZ N, CHAN N H, et al. Quantifying the uncertainty in ground-based GNSS-reflectometry sea level measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4419-4428. |
[22] | PURNELL D J, GOMEZ N, MINARIK W, et al. Precise water level measurements using low-cost GNSS antenna arrays[J]. Earth Surface Dynamics, 2021, 9(3): 673-685. |
[23] | STRANDBERG J, HOBIGER T, HAAS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS Solutions, 2019, 23(3): 61. |
[24] | GEREMIA-NIEVINSKI F, HOBIGER T, HAAS R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 70. |
[25] | LÖFGREN J S, HAAS R, SCHERNECK H G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of Geodynamics, 2014, 80: 66-80. |
[26] | TABIBI S, GEREMIA-NIEVINSKI F, FRANCIS O, et al. Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland[J]. Remote Sensing of Environment, 2020, 248: 111959. |
[27] | GRAVALON T, SEOANE L, RAMILLIEN G, et al. Determination of weather-induced short-term sea level variations by GNSS reflectometry[J]. Remote Sensing of Environment, 2022, 279: 113090. |
[28] | PENG Dongju, LIN Y N, LEE J C, et al. Multi-constellation GNSS interferometric reflectometry for tidal analysis: mitigations for K1 and K2 biases due to GPS geometrical errors[J]. Journal of Geodesy, 2024, 98(1): 5. |
[29] |
何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178. DOI:.
doi: 10.11947/j.AGCS.2020.20200228 |
HE Xiufeng, WANG Jie, WANG Xiaolei, et al. Retrieval of coastal typhoon storm surge using multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178. DOI:.
doi: 10.11947/j.AGCS.2020.20200228 |
|
[30] | YEH R, NASHED Y S G, PETERKA T, et al. Fast automatic knot placement method for accurate B-spline curve fitting[J]. Computer-Aided Design, 2020, 128: 102905. |
[31] | MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. |
[32] | 覃雪冰. 改进的Levenberg-Marquardt方法及其应用[D]. 南宁: 南宁师范大学, 2022. |
QIN Xuebing. Improved Levenberg-Marquardt method and its application[D]. Nanning: Nanning Normal University, 2022. | |
[33] | 方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986. |
FANG Guohong, ZHENG Wenzhen, CHEN Zongyong, et al. Analysis and prediction of tides and tidal currents[M]. Beijing: Ocean Press, 1986. | |
[34] | ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS Solutions, 2018, 22(3): 80. |
[35] | WANG Xiaolei, HE Xiufeng, XIAO Ruya, et al. Millimeter to centimeter scale precision water-level monitoring using GNSS reflectometry: application to the south-to-north water diversion project, China[J]. Remote Sensing of Environment, 2021, 265: 112645. |
[36] | CHEN Lingqiu, CHAI Hongzhou, ZHENG Naiquan, et al. Feasibility and performance evaluation of low-cost GNSS devices for sea level measurement based on GNSS-IR[J]. Advances in Space Research, 2023, 72(11): 4651-4662. |
[37] | MIGUEZ B M, TESTUT L, WÖPPELMANN G. The Van de Casteele test revisited: an efficient approach to tide gauge error characterization[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7): 1238-1244. |
[38] |
王笑蕾, 何秀凤, 宋敏峰, 等. 多模多频GNSS-IR水位反演中的频间偏差分析及改正[J]. 测绘学报, 2022, 51(11): 2328-2338. DOI..
doi: 10.11947/j AGCS.2022.20210461 |
WANG Xiaolei, HE Xiufeng, SONG Minfeng, et al. Analysis of inter-frequency bias in multi-mode multi-frequency GNSS-IR water level retrieval and correction method[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2328-2338. DOI..
doi: 10.11947/j AGCS.2022.20210461 |
|
[39] |
王笑蕾, 牛紫瑾, 何秀凤, 等. 沿海沉降变化GNSS定位及GNSS-IR组合监测[J]. 测绘学报, 2023, 52(1): 32-40. DOI:.
doi: 10.11947/j.AGCS.2023.20210414 |
WANG Xiaolei, NIU Zijin, HE Xiufeng, et al. Monitoring of coastal sedimentation changes based on GNSS and GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 32-40. DOI:.
doi: 10.11947/j.AGCS.2023.20210414 |
|
[40] | MATVIICHUK B, KING M, WATSON C. Estimating ocean tide loading displacements with GPS and GLONASS[J]. Solid Earth, 2020, 11(5): 1849-1863. |
[1] | 王笑蕾, 南阳, 何秀凤, 宋敏峰. 考虑潮波特性的GNSS-IR潮位反演方法[J]. 测绘学报, 2024, 53(3): 482-492. |
[2] | 何佳星, 郑南山, 丁锐, 张克非, 陈天悦. 粒子群优化卷积神经网络GNSS-IR土壤湿度反演方法[J]. 测绘学报, 2023, 52(8): 1286-1297. |
[3] | 王笑蕾, 牛紫瑾, 何秀凤, 李润川. 沿海沉降变化GNSS定位及GNSS-IR组合监测[J]. 测绘学报, 2023, 52(1): 32-40. |
[4] | 王洁, 王娜子, 徐天河, 高凡, 贺匀峤. 组合GNSS观测值反演海面高度[J]. 测绘学报, 2022, 51(2): 201-211. |
[5] | 王笑蕾, 何秀凤, 宋敏峰, 陈殊, 牛紫瑾. 多模多频GNSS-IR水位反演中的频间偏差分析及改正[J]. 测绘学报, 2022, 51(11): 2328-2338. |
[6] | 何秀凤, 王杰, 王笑蕾, 宋敏峰. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||