测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2099-2110.doi: 10.11947/j. AGCS.2024.20240249.

• 大地测量学与导航 • 上一篇    

基于多模多频SNR数据逆建模反演海面高度变化

陈灵秋1,2(), 柴洪洲1(), 暴景阳3, 王敏1,2, 郑乃铨4   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450001
    2.智慧地球重点实验室,陕西 西安 710000
    3.福建理工大学智慧海洋科学技术学院,福建 福州 350118
    4.山东科技大学测绘与空间信息学院,山东 青岛 266590
  • 收稿日期:2024-06-19 发布日期:2024-12-13
  • 通讯作者: 柴洪洲 E-mail:clqseu@126.com;chaihz1969@163.com
  • 作者简介:陈灵秋(1988—),女,博士生,讲师,研究方向为GNSS遥感。 E-mail:clqseu@126.com
  • 基金资助:
    国家自然科学基金(42304043);智慧地球重点实验室基金(KF2023YB01-11)

Sea surface height inversion based on inverse modeling of multi-GNSS and multi-frequency SNR data

Lingqiu CHEN1,2(), Hongzhou CHAI1(), Jingyang BAO3, Min WANG1,2, Naiquan ZHENG4   

  1. 1.Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
    2.Key Laboratory of Smart Earth, Xi'an 710000, China
    3.School of Smart Marine Science and Technology, Fujian University of Technology, Fuzhou 350118, China
    4.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2024-06-19 Published:2024-12-13
  • Contact: Hongzhou CHAI E-mail:clqseu@126.com;chaihz1969@163.com
  • About author:CHEN Lingqiu (1988—), female, PhD candidate, lecturer, majors in GNSS remote sensing. E-mail: clqseu@126.com
  • Supported by:
    The National Natural Science Foundation of China(42304043);Key Laboratory of Smart Earth(KF2023YB01-11)

摘要:

利用信噪比(SNR)数据进行逆建模可以反演海面高度及其变化,但反演精度、稳定性依赖初值的精度和SNR数据的时间连续性,基于多模多频SNR数据逆建模反演海平面变化的性能及其在潮汐分析中的应用有待进一步研究。本文为LSP(Lomb-Scargle periodogram)反演结果引入海面动态改正,用于逆建模过程参数初始化,获得稳定、均匀的高精度海面高度反演值,并由反演海面高度开展潮汐调和分析。选取MAYG、BRST和SC02这3个大潮差测站,对其1 a的多模多频SNR数据开展逆建模反演试验,与验潮站实测海面高度对比分析进行算法验证。结果表明,MAYG站逆建模反演海面高度的均方根误差(RMSE)为5.97 cm,BRST站为8.78 cm,SC02站为2.38 cm,海平面变化反演精度达到厘米级;与实测海面高度的潮汐调和分析结果对比,年度、逐月拟合残差中误差高度一致,提取的分潮振幅平均绝对误差(MAE)优于1 cm,提取的迟角MAE在3°以内,潮汐分析提取的潮汐成分和非潮汐水位均具有高度一致性。多模多频SNR数据逆建模反演海面高度能够替代验潮站实测海面高度用于潮汐调和分析。

关键词: GNSS-IR, 海面高度反演, 逆建模, LSP, SNR数据

Abstract:

The inverse modeling utilizing signal-to-noise ratio (SNR) data enables the inversion of sea surface height (SSH) and its variations. However, the accuracy and stability of the inversion process hinge on the precision of the initial values and the temporal continuity of the SNR data. Further investigation is required into the performance of inverse modeling based on multi-mode and multi-frequency SNR data for inverting sea-level changes and its application in tidal analysis. This study introduces a dynamic correction for sea surface variations into the inversion results of the Lomb-Scargle periodogram (LSP), which is utilized for initializing parameters in the inverse modeling process. This approach yields stable and uniform high-precision SSH inversion values, which are then employed to conduct tidal harmonic analysis. Three stations with large tidal ranges, namely MAYG, BRST, and SC02, were selected for inverse modeling and inversion experiments using their one-year multi-mode and multi-frequency SNR data. Algorithm validation was conducted through comparative analysis with in-situ SSH measurements from tide gauges. The results indicate that the root-mean-square error (RMSE) of the SSH inversion via inverse modeling is 5.97 cm for MAYG, 8.78 cm for BRST, and 2.38 cm for SC02, demonstrating centimeter-level accuracy in SSH inversion. When compared with the tidal harmonic analysis results of the observed SSH, the annual and monthly fitting residuals exhibit high consistency in terms of mean square error. The mean absolute error (MAE) of the extracted tidal constituent amplitudes is better than 1 cm, and the MAE of the extracted tidal phase lags is within 3°. Both the tidal components and non-tidal water levels extracted from the tidal analysis demonstrate high consistency. Therefore, the inversion of SSH using multi-mode and multi-frequency SNR data can serve as a viable alternative to in-situ SSH measurements for tidal harmonic analysis.

Key words: GNSS-IR, sea surface height inversion, inverse modeling, LSP, SNR data

中图分类号: